Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
GaN has recently been shown to host bright, photostable, defect single-photon emitters in the 600–700 nm wavelength range that are promising for quantum applications. The nature and origin of these defect emitters remain elusive. In this work, we study the optical dipole structures and orientations of these defect emitters using the defocused imaging technique. In this technique, the far-field radiation pattern of an emitter in the Fourier plane is imaged to obtain information about the structure of the optical dipole moment and its orientation in 3D. Our experimental results, backed by numerical simulations, show that these defect emitters in GaN exhibit a single dipole moment that is oriented almost perpendicular to the wurtzite crystal c-axis. Data collected from many different emitters show that the angular orientation of the dipole moment in the plane perpendicular to the c-axis exhibits a distribution that shows peaks centered at the angles corresponding to the nearest Ga–N bonds and also at the angles corresponding to the nearest Ga–Ga (or N–N) directions. Moreover, the in-plane angular distribution shows little difference among defect emitters with different emission wavelengths in the 600–700 nm range. Our work sheds light on the nature and origin of these GaN defect emitters.more » « less
-
The cell plasma membrane is a two-dimensional, fluid mosaic material composed of lipids and proteins that create a semipermeable barrier defining the cell from its environment. Compared with soluble proteins, the methodologies for the structural and functional characterization of membrane proteins are challenging. An emerging tool for studies of membrane proteins in mammalian systems is a “plasma membrane on a chip,” also known as a supported lipid bilayer. Here, we create the “plant-membrane-on-a-chip,″ a supported bilayer made from the plant plasma membranes of Arabidopsis thaliana, Nicotiana benthamiana, or Zea mays. Membrane vesicles from protoplasts containing transgenic membrane proteins and their native lipids were incorporated into supported membranes in a defined orientation. Membrane vesicles fuse and orient systematically, where the cytoplasmic side of the membrane proteins faces the chip surface and constituents maintain mobility within the membrane plane. We use plant-membrane-on-a-chip to perform fluorescent imaging to examine protein–protein interactions and determine the protein subunit stoichiometry of FLOTILLINs. We report here that like the mammalian FLOTILLINs, FLOTILLINs expressed in Arabidopsis form a tetrameric complex in the plasma membrane. This plant-membrane-on-a-chip approach opens avenues to studies of membrane properties of plants, transport phenomena, biophysical processes, and protein–protein and protein–lipid interactions in a convenient, cell-free platform.more » « less
-
Abstract Azimuthal beam scanning eliminates the uneven excitation field arising from laser interference in through-objective total internal reflection fluorescence (TIRF) microscopy. The same principle can be applied to scanning angle interference microscopy (SAIM), where precision control of the scanned laser beam presents unique technical challenges for the builders of custom azimuthal scanning microscopes. Accurate synchronization between the instrument computer, beam scanning system and excitation source is required to collect high quality data and minimize sample damage in SAIM acquisitions. Drawing inspiration from open-source prototyping systems, like the Arduino microcontroller boards, we developed a new instrument control platform to be affordable, easily programmed, and broadly useful, but with integrated, precision analog circuitry and optimized firmware routines tailored to advanced microscopy. We show how the integration of waveform generation, multiplexed analog outputs, and native hardware triggers into a single central hub provides a versatile platform for performing fast circle-scanning acquisitions, including azimuthal scanning SAIM and multiangle TIRF. We also demonstrate how the low communication latency of our hardware platform can reduce image intensity and reconstruction artifacts arising from synchronization errors produced by software control. Our complete platform, including hardware design, firmware, API, and software, is available online for community-based development and collaboration.more » « less
An official website of the United States government
